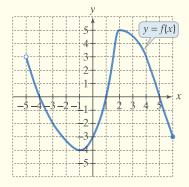
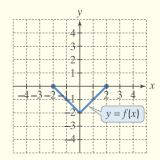

Chapter I Test


- **1.** List by letter all relations that are not functions.
 - **a.** $\{(7,5), (8,5), (9,5)\}$
 - **b.** $\{(5,7), (5,8), (5,9)\}$

- **d.** $x^2 + y^2 = 100$



2. Use the graph of y = f(x) to solve this exercise.

- **a.** What is f(4) f(-3)?
- **b.** What is the domain of f?
- **c.** What is the range of f?
- **d.** On which interval or intervals is *f* increasing?
- On which interval or intervals is f decreasing?
- For what number does f have a relative maximum? What is the relative maximum?
- For what number does f have a relative minimum? What is the relative minimum?
- **h.** What are the *x*-intercepts?
- **i.** What is the *y*-intercept?

3. Use the graph of y = f(x) to solve this exercise.

- **a.** What are the zeros of f?
- **b.** Find the value(s) of x for which f(x) = -1.
- **c.** Find the value(s) of x for which f(x) = -2.
- **d.** Is f even, odd, or neither?
- **e.** Does f have an inverse function?
- **f.** Is f(0) a relative maximum, a relative minimum, or neither?
- **g.** Graph g(x) = f(x + 1) 1.
- **h.** Graph $h(x) = \frac{1}{2}f(\frac{1}{2}x)$.
- i. Graph r(x) = -f(-x) + 1.
- **j.** Find the average rate of change of f from $x_1 = -2$ to

In Exercises 4–15, graph each equation in a rectangular coordinate system. If two functions are indicated, graph both in the same system. Then use your graphs to identify each relation's domain and range.

4.
$$x + y = 4$$

5.
$$x^2 + v^2 = 4$$

6.
$$f(x) = 4$$

7.
$$f(x) = -\frac{1}{3}x + 2$$

8.
$$(x + 2)^2 + (y - 1)^2 = 9$$

6.
$$f(x) = 4$$

7. $f(x) = -\frac{1}{3}x + 2$

8. $(x+2)^2 + (y-1)^2 = 9$

9. $f(x) = \begin{cases} 2 & \text{if } x \le 0 \\ -1 & \text{if } x > 0 \end{cases}$

10.
$$x^2 + y^2 + 4x - 6y - 3 = 0$$

11.
$$f(x) = |x|$$
 and $g(x) = \frac{1}{2}|x+1| - 2$

12.
$$f(x) = x^2$$
 and $g(x) = -(x-1)^2 + 4$

13.
$$f(x) = 2x - 4$$
 and f^{-1} **14.** $f(x) = x^3 - 1$ and f^{-1}

14.
$$f(x) = x^3 - 1$$
 and f^{-1}

15.
$$f(x) = x^2 - 1, x \ge 0$$
, and f^{-1}

In Exercises 16–23, let $f(x) = x^2 - x - 4$ and g(x) = 2x - 6.

16. Find
$$f(x - 1)$$
.

17. Find
$$\frac{f(x+h) - f(x)}{h}$$
.

18. Find
$$(g - f)(x)$$
.

19. Find
$$\left(\frac{f}{g}\right)(x)$$
 and its domain.

20. Find
$$(f \circ g)(x)$$
.

21. Find
$$(g \circ f)(x)$$
.

22. Find
$$g(f(-1))$$
.

23. Find
$$f(-x)$$
. Is f even, odd, or neither?

In Exercises 69-72, begin by graphing the standard quadratic function, $f(x) = x^2$. Then use transformations of this graph to graph the given function.

69.
$$g(x) = x^2 + 2$$

70.
$$h(x) = (x + 2)^2$$

71.
$$r(x) = -(x+1)^2$$

71.
$$r(x) = -(x+1)^2$$
 72. $y(x) = \frac{1}{2}(x-1)^2 + 1$

In Exercises 73–75, begin by graphing the square root function, $f(x) = \sqrt{x}$. Then use transformations of this graph to graph the given function.

73.
$$g(x) = \sqrt{x+3}$$

74.
$$h(x) = \sqrt{3-x}$$

75.
$$r(x) = 2\sqrt{x+2}$$

In Exercises 76–78, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function.

76.
$$g(x) = |x + 2| - 3$$
 77. $h(x) = -|x - 1| + 1$

77.
$$h(x) = -|x-1| + 1$$

78.
$$r(x) = \frac{1}{2}|x+2|$$

In Exercises 79–81, begin by graphing the standard cubic function, $f(x) = x^3$. Then use transformations of this graph to graph the given function.

79.
$$g(x) = \frac{1}{2}(x-1)^3$$
 80. $h(x) = -(x+1)^3$

80.
$$h(x) = -(x+1)^3$$

81.
$$r(x) = \frac{1}{4}x^3 - 1$$

In Exercises 82–84, begin by graphing the cube root function, $f(x) = \sqrt[3]{x}$. Then use transformations of this graph to graph the given function.

82.
$$g(x) = \sqrt[3]{x+2} - 1$$
 83. $h(x) = -\sqrt[3]{2x}$

83.
$$h(x) = -\sqrt[3]{2x}$$

84.
$$r(x) = -2\sqrt[3]{-x}$$

1.7

In Exercises 85–90, find the domain of each function.

85.
$$f(x) = x^2 + 6x - 3$$
 86. $g(x) = \frac{4}{x - 7}$

86.
$$g(x) = \frac{4}{x-7}$$

87.
$$h(x) = \sqrt{4 - x}$$

87.
$$h(x) = \sqrt{4-x}$$
 88. $f(x) = \frac{x}{x^2 + 4x - 21}$

89.
$$g(x) = \frac{\sqrt{x-2}}{x-5}$$

90.
$$f(x) = \sqrt{x-1} + \sqrt{x+5}$$

In Exercises 91–93, find f + g, f - g, fg, and $\frac{f}{g}$. Determine the domain for each function.

91.
$$f(x) = 3x - 1$$
, $g(x) = x - 5$

92.
$$f(x) = x^2 + x + 1$$
, $g(x) = x^2 - 1$

93.
$$f(x) = \sqrt{x+7}$$
, $g(x) = \sqrt{x-2}$

In Exercises 94–95, find **a.** $(f \circ g)(x)$; **b.** $(g \circ f)(x)$; **c.** $(f \circ g)(3)$.

94.
$$f(x) = x^2 + 3$$
, $g(x) = 4x - 1$

95.
$$f(x) = \sqrt{x}$$
, $g(x) = x + 1$

In Exercises 96–97, find **a.** $(f \circ g)(x)$; **b.** the domain of $(f \circ g)$.

96.
$$f(x) = \frac{x+1}{x-2}$$
, $g(x) = \frac{1}{x}$

97.
$$f(x) = \sqrt{x-1}$$
, $g(x) = x+3$

In Exercises 98–99, express the given function h as a composition of two functions f and g so that $h(x) = (f \circ g)(x)$.

98.
$$h(x) = (x^2 + 2x - 1)^4$$
 99. $h(x) = \sqrt[3]{7x + 4}$

99.
$$h(x) = \sqrt[3]{7x + }$$

1.8

In Exercises 100–101, find f(g(x)) and g(f(x)) and determine whether each pair of functions f and g are inverses of each other.

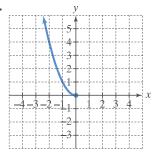
100.
$$f(x) = \frac{3}{5}x + \frac{1}{2}$$
 and $g(x) = \frac{5}{3}x - 2$

101.
$$f(x) = 2 - 5x$$
 and $g(x) = \frac{2 - x}{5}$

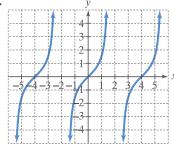
The functions in Exercises 102-104 are all one-to-one. For each function,

a. Find an equation for $f^{-1}(x)$, the inverse function.

Verify that your equation is correct by showing that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.


102.
$$f(x) = 4x - 3$$

103.
$$f(x) = 8x^3 + 1$$


104.
$$f(x) = \frac{2}{x} + 5$$

Which graphs in Exercises 105–108 represent functions that have inverse functions?

105.

106.

