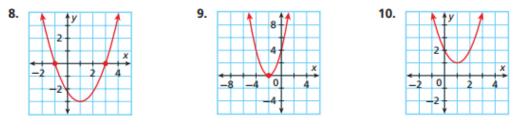
<u>Part 1</u>

9-1 Identifying Quadratic Functions

Tell whether each function is quadratic. Explain.


1.
$$y + 2x^2 = 3x$$

2. $x^2 + y = 4 + x^2$
3. $(-2, 12)(-1, 3)(0, 0)(1, 3)$

Tell whether the graph of each quadratic function opens upward or downward and whether the parabola has a maximum or a minimum.

- **4.** $y = -x^2 7x + 18$ **5.** $y 2x^2 = 4x + 3$ **6.** $f(x) = 5x 0.5x^2$
- **7.** Graph the function $y = \frac{1}{2}x^2 2$ and give the domain and range.

9-2 Characteristics of Quadratic Functions

Find the zeros of each function from its graph. Then find its the axis of symmetry.

Find the vertex of each parabola.

11. $y = x^2 + 6x + 2$ **12.** $y = 3 + 4x - 2x^2$ **13.** $y = 3x^2 + 12x - 12$

14. The height in feet of the curved roof of an aircraft hangar can be modeled by $y = -0.02x^2 + 1.6x$, where *x* is the distance in feet from one wall at ground level. How tall is the hangar?

<u>Part 2</u>

9-5 Solving Quadratic Equations by Graphing

Solve each equation by graphing the related function.

- **1.** $x^2 9 = 0$ **2.** $x^2 + 3x 4 = 0$ **3.** $4x^2 + 8x = 32$
- **4.** The height of a fireworks rocket launched from a platform 35 feet above the ground can be approximated by $h = -5t^2 + 30t + 35$, where *h* is the height in meters and *t* is the time in seconds. Find the time it takes the rocket to reach the ground after it is launched.

9-6 Solving Quadratic Equations by Factoring

Use the Zero Product Property to solve each equation.

5. (x+1)(x+3) = 0 **6.** (x-6)(x-3) = 0 **7.** x(x+3) = 18 **8.** (x+2)(x-5) = 60

Solve each quadratic equation by factoring.

- **9.** $x^2 4x 32 = 0$ **10.** $x^2 8x + 15 = 0$ **11.** $x^2 + x = 6$ **12.** $-8x 33 = -x^2$
- **13.** The height of a soccer ball kicked from the ground can be approximated by the function $h = -16t^2 + 64t$, where *h* is the height in feet and *t* is the time in seconds. Find the time it takes for the ball to return to the ground.